A Short-Circuit Transmission Line Method for PIM evaluation of Metallic materials

Yasuyuki YAMAMOTO Nobuhiro KUGA

Faculty of Engineering, Yokohama National University

Backgrounds

- Intermodulation distortion in passive devices (PIM)
 - □ Modulation signal • $f1 + f2 + nonlinearity \Rightarrow f3$
 - Focus on a little nonlinearity that passive components have
 - **Example:** Metallic contacts, oxidation or corrosion
 - PIM power level: $-50 \sim -150$ dBm

(Input: 43dBm(20W) × 2tone)

Typical problems

- Interference: PIMs at duplexer can not be filtered out
- Increase of noise floor in the receiver

Conventional method

Example:

Power based nonlinearity

- Measurement has been carried out with matched condition
- Sample: transmission line itself
- Various nonlinearities are measured

Nonlinearity	Current-based	Power-based
Components	Parallel	Transverse
	I // V	E⊥H
Component relation	V=RI	E=Zc H
	(Resistance)	(Characteristic
		impedance)
Matching	None	Needed
Sample	Metallic materials	Insulator
	Point contacts	Suppoter

Conventional:

2 types nonlinearities: Mixed up It is difficult to separate them

Proposed method

- PIM is evaluated with the short-circuit
 - Mismatch condition makes standing wave in the transmission line
 - Sample: short-circuiting material
 - × transmission line itself
- Avoid the power-based nonlinearity
 - Either electric or magnetic field exists at node/anti-node position
 - Power-based nonlinearity can be negligible
- Advantage: The only current-based nonlinearity can be measured

Calibration of the system noise

- System noise = PIM generated in mea. sys.
- Calibration is carried out with line length *l*
 - Change line length = the position of node/anti-node is shifted together
- System noise level
 - Can be calibrated and minimized
 - Choose the appropriate line length
- The system noise level can be suppressed
- More sensitive measurement
 - Minimized system noise level: about -130 ∽ -120dBm

Applications of short-circuit method

7

- Available in many measurement application
 - the arbitral-shaped sample can be employed
- Examples: metallic material nonlinearity
 - There are no report on material nonlinearity
 - Nonlinearity of a spot contact is well known
 - Sample: Metallic wires
 - Useful to estimate the current density
 - Easy to control the current density
 - □ Sample: Copper foils
 - Evaluate a metallic material in an actual form including a printed board circuit

Configuration of measurement system

- 2tone-input measurement
 - 43dBm(20W) /tone
 - □ Input frequency: 2GHz band
 - Measured 3rd-order PIM
- Sys. Noise level: about -120dBm

 $f_1 = 2050 \text{MHz}$ $f_2 = 2200 \text{MHz}$ $f_{IM3} = 2f_1 - f_2 = 1900 \text{MHz}$

The results of metallic wire

• Wire number : parameter thickness : fixed(0.2mm)

 PIM level becomes lower gradually with the increase of connecting wire number (b) Wire number : fixed(1wire) thickness : parameter

- Wire thicken \rightarrow PIM degrease
- Silver generate less PIM than copper

The current density affects on the material-based PIM

The relation between the PIM and current density

- Uniform current distribution
 - Wire form samples.... useful to calculate current density exactly

- The PIM characteristics: described as a single-line at each material
 - The results are shown with approximation line
 - Regardless of the wire thickness and the connecting wire number

Material-based PIM level: controlled by the current density

- The quantitative PIM evaluation is achieved
- a function of current density

The results of copper foils

- The calculation of the current density is difficult
 - Discontinuity at foil edge

- Stripline width 1~4mm
- Conventional: × arbitral line width

(b) width: fixed (w=1mm)

PIM evaluation for foil thickness:
20, 40, 80 µ m

The quantitative PIM relation with strip width and thickness is clearly obtained

Conclusions

- A short-circuit transmission line method for PIM evaluation is proposed
 - Current-based nonlinearity evaluation with the exception of power-based nonlinearity
 - More sensitive measurement by system noise calibration
- Example: evaluation results for material nonlinearity
- The quantitative PIM evaluation is achieved with the materialbased PIM as a function of current density
 - Experimentally evaluated: PIM characteristics of the metallic wires and foils
 - From the results of foils, the quantitative PIM relation with strip-line width or thickness is also obtained

Future problems

- Examining the effect of line length
- Soldering connection in DUT